Great Salt LakeWater Quality Studies

Great Salt LakeWater Quality Studies

Program Objective:

Set a Site-Specific Numeric Water Quality Standard for Selenium for the Open Waters of the Great Salt Lake

What activities are necessary to achieve an interim standard in 2007?

Science Panel Identified Four Projects to Meet Objective

- Principal Investigators
 - Michael Conover, Ph.D.
 - Clay Perschon
- Project Advisors
 - Gary Santolo
 - John Cavitt, Ph.D.

Project 1 – Avian Ecology

Project Objective

Determine Se flux from bird diet to critical end points by determining ambient selenium concentrations in water, brine shrimp, brine flies, other food items, birds, and bird eggs.

Project 1 – Avian Ecology Project Objective on critical end points bioaccumulation

Determine potential selenium effects

- reproductive effects
- tissue burdens and survival

- 1. Summarize Past Studies
- 2. Identify Nesting Sites
 - Avocets/Stilts 4 locations
 - California Gulls 3 locations
- 3. Locate Foraging Areas
- 4. Collect Adult Birds
- 5. Sample Food Items and Water

Sampling Locations

- 6. Collect Eggs
- 7. Revisit Nests to Check for Deformities
- 8. Determine Se Concentrations
- 9. Collect Over-wintering Birds
 - Eared Grebes (October January)
 - Ducks (December March)

- Principal Investigators
 - Wayne Wurtsbaugh, Ph.D.
 - Brad Marden
- Project Advisor
 - Earl Byron, Ph.D.

Project Objective

Determine spatial and temporal variation in Se concentrations in the water and in pelagic and benthic food web components leading to the birds of interest.

- Collect Periphyton, Brine Fly Larvae, Pupae and Adults in Benthic Habitats for Se Analyses
 - Preliminary Study to Determine Link to Bird Diet (Two Locations)
 - Test Benthic Sampling Protocols that have Not Been Used on GSL
 - Includes Sampling at Sandy, Muddy, and Stromatolite Locations

Project 2 – Aquatic Ecology

Additional tasks considered:

- Synoptic survey of benthic zone to understand spatial/temporal dynamics of brine flies and their food base
- Mesocosm experiments to evaluate salinity impacts upon Se bio-accumulation

- 2. Synoptic Survey of Water, Seston, and Artemia
 - Document the Temporal and Spatial
 Characteristics of Total Se Concentration in
 Water and Correlate with Seston and Artemia
 Tissue Concentrations
 - Correlate Isotopic 15N & 13C Levels with Se Concentration in Artemia Tissue
 - Monitor Primary Production Indicators and Record Artemia Population Dynamics

Project 3 – Selenium Loads

- Principal Investigators
 - Dave Naftz, Ph.D.
 - Bill Johnson, Ph.D.
- Project Advisor
 - Earl Byron, Ph.D.

Project Objective

Measure discharge and Se loads from various sources to open waters of the Great Salt Lake to understand inputs to the ecosystem.

- 1. Analyze USGS Archived Samples for Se Loads (outside of contract)
- Install Stream Gages on all Primary Point Sources of Se Loading to the Main Body of GSL
- 3. Perform Modeling of Daily Se Loadings to GSL
- 4. Estimate Se Load to GSL From Groundwater (Duke University) (outside of contract)

CH2MHILL/CWECS

Gage Locations

- Principal Investigators
 - Bill Johnson, Ph.D.
 - Dave Naftz, Ph.D.
- Project Advisor
 - Earl Byron, Ph.D.

Project Objective

- Are volatilization and ebullition (bubbling) significant release mechanisms for Se from the GSL?
- 2. Is Se stored in sediment and do mixing events re-mobilize the Se?
- 3. Does changing water elevation/lake area re-introduce Se into the water column?

Project 4 – Se in Vapor/Sediment Task 1. Vapor Selenium Flux

Se vapor analyzed via quadrupole mass spectrometry
Sediment grab samples for total organic carbon and total Se

Project 4 – Se in Vapor/Sediment Task 2. Sedimentation Flux

- •Two sediment traps on lake bottom
- Sampled semi-monthly
- •Water column samples at two depths at two locations
- Sampled semi-monthly

- •Thermistor string and turbidimeter deployed at five depths at two locations
- Retrieved semi-monthly
- •Water column sampled following storm events

Total Se by extraction then HG-AA Se phase identification by FFF-ICP-MS

Project 4 – Se in Vapor/Sediment Task 3. Lake Area Change/Permanency

Still-exaggerated depth to width ratio

Lake area change:

- •20 cores (submerged and exposed)
- •Sequential extraction to determine Se release upon lake area change, e.g. submergence

Permanency:

- •3 cores
- Dating by 137Cs
- •Selenium accumulation rates over past
- Comparison to present sedimentation rate
- Yields permanency of sedimentation

Total Se by extraction then HG-AA
Se phase identification by FFF-ICP-MS
Overall Se budget will be developed in this task

Objective

Provide technical direction, peer review/quality control, and coordination of all activities to achieve program objective while minimizing risk of challenge.

- 1. Planning and Design
- 2. Coordination/Management
- 3. Technical Oversight
- 4. Establish Data Quality Objectives
- 5. Quality Assurance/Data Management

- Project 1: 4/2006 5/2007
- Project 2: April December 2006
- Project 3: 3/2006 5/2008
- Project 4: 6/2006 5/2007

Costs to Complete Identified Work (Sampling Yr 2006) (± 10%)

Project 1	\$220,000
Project 2	\$153,000
Project 3	\$72,000
Project 4	\$301,000
Program Support	\$189,000
Subtotal	\$990,000
USGS Matching Funds	-\$55,000
Total Cost	\$935,000

Great Salt LakeWater Quality Studies

Questions?

Notification of Selection	1/27
Draft Scope Framework	1/27-2/9
Kickoff Meeting	2/9
Draft Scopes of Work/Costs	2/9-2/23
Science Panel Review Meeting	2/23
Science Panel Review Meeting	3/8